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An apparatus that approximates a two-dimensional, infinite train of peristaltic 
waves yields measurements of mean flow, of mean pressure rise, and of pressure- 
time pulses at fixed locations. In addition, visual observations of ‘reflux ’ and 
‘trapping ’, using dyed fluid, are shown. The inertia-free range extends up to a 
Reynolds number of about 1. In  this range, the theory of Shapiro, Jafi in & 
Weinberg (1  969) is confirmed with respect to mean pressure us. mean flow, pressure 
us. time, reflux, and trapping. The controversy regarding the criterion of material 
reflux is settled in favour of the Lagrangian time-mean velocity rather than the 
Eulerian time-mean velocity. Experiments at higher Reynolds numbers show 
that the second-order expansion theory of Jaffrin (1971) is valid up to a Reynolds 
number of about 10. 

1. Introduction 
The experimental investigations of this paper concern two-dimensional 

peristaltic pumping with Reynolds numbers ranging from the inertia-free limit 
to values in which inertial effects are significant. 

The governing parameters of the problem 

Four dimensionless parameters govern the fluid-mechanical problem of a 
liquid that is pumped by an infinite train of peristaltic waves of sinusoidal form 
that progress along the walls of a symmetrical, two-dimensional channel (see 
figure 1): 

(i) The wave-number, CL = a/h,  where a is the mean channel half-width and 
h is the wavelength. 

(ii) The amplitude ratio, I$ = b/a, where b is the wave amplitude. Note that 

(is) The Reynolds number, the appropriate form of which for low Reynolds 
numbers is R = a2c/hv, where c is the wave speed and v is the kinernatio viscosity 
of an incompressible fluid. 

(iv) The flow parameter, 2 = &lac, where 0 is the time-mean volume flow 
rate between the axis of the channel and one wall, per unit depth normal to the 
paper. 

O < $ < l .  

t Present address : Department of Mechanical and Aerospace Engineering, Washington 
University, St Louis, Missouri. 
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Theoretical context of the experiments 

Shapiro (1967) solvedthe case ofinertia-free, long-wavelength flow (R = 0; a = 0) 
for arbitrary values of q5 and 2, and gave in explicit algebraic form the linear 
relationship between mean flow and mean pressure rise. 

Burns & Parkes (1967) also assumed inertia-free flow (R = O ) ,  but considered 
finite wavelengths (a $; 0). Their series solution, which gives the mean flow for 
zero mean pressure rise, is limited to  small amplitude ratios $. 

Conversely, Hanin (1968) considered long wavelengths (a  = 0) but admitted 
arbitrary values of R. His series solution, like that of Burns SS Parkes, is for 
q5 < 1, and gives the mean flow for zero mean pressure rise. 

/1 

r 

\ 

Fung & Yih (1  968) allowed for arbitrary values of R and a, but their solution 
is limited to small values of q5. In  one part of the paper, they calculated the 
Eulerian time-mean velocity at fixed locations and erroneously identified this 
with the displacement of material fluid. This is a question of potential importance 
in connexion with so-called ‘reflux’, i.e. the retrograde passage of bacteria from 
the bladder to the kidneys, a phenomenon sometimes observed in ureteral 
function. Fung & Yih concluded that, with a net positive transport of fluid, net 
negative displacements of fluid, if they occurred at all, would occur at and near 
the axis of the duct. 

In a discussion of Fung & Yih, Jaffrin & Shapiro (1969) argued that, if retro- 
grade motion of fluid is in question, the appropriate quantity to calculate is the 
Lagrangian displacement of fluid particles, not the Eulerian time-mean velocity. 
Shapiro et al. (1969), in an elaboration and extension of Burnes & Parkes, showed 
that the Lagrangian mean and the Eulerian mean are often of different sign. 
Further, they showed that, when reflux does occur, it is near the walls of the tube 
rather than near the axis. Fung & Yih (1969), in their response to the arguments 
of Jaffrin & Shapiro, persisted in their position. The mistaken identification of the 
Eulerian time-mean velocity with the displacement of material particles was 
again perpetuated by Yin & Fung (1969) and by Zien & Ostrach (1970). 
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The effects of Reynolds number (inertia) and of wave number (streamline 
curvature), when these are small but not negligible, were worked out in con- 
venient form by Jaffrin (1971) through expansions in R and a2, without any 
limitation on amplitude ratio q5. 

Latham (1966) presented some experimental results which gave rough con- 
firmation of the inertia-free theory, but his apparatus was not sufficiently precise 
mechanically to answer many important questions. 

Objectives 

With reference first to the inertia-free range, R < 1, there were four objectives: 
(i) to verify the explicit relationship between time-mean flow and pressure rise 
per wavelength, given in Shapiro (1967) and Shapiro et al. (1969); (ii) to compare 
experimental curves of pressure us. time at fixed locations with the corresponding 
theoretical predictions; (iii) to introduce experimental evidence to the theoretical 
controversy on material reflux, described above; and (iv) to obtain experimental 
confirmation of the phenomenon of ‘trapping ’ discovered theoretically by 
Shapiro et al. (1969) in which a bolus of fluid in the widest part of the wave is 
carried along at  precisely the wave speed. 

In  the range where inertia is important, the objectives were (i) to establish up to 
what value of R the inertia-free theory is valid; (ii) to test Jaffrin’s (197 1) second- 
order theory; (iii) to establish up to what value of R the latter is applicable. 

2. Experimental apparatus 
The flow circuit 

The peristaltic pump was located between two open reservoirs, each composed 
of a lower section (transition chamber) and an open tank of large volume located 
above it. 

The fluid levels within the two reservoirs were controlled by over-flow pipes. 
Both over-flow pipes were connected to a common sump tank located below the 
peristaltic pump. A rotary pump supplied liquid from the sump to the upstream 
reservoir, the level in which was held constant by allowing excess fluid to drain 
through an over-flow pipe. The level within the downstream reservoir, into which 
the peristaltic pump discharged, was also controlled by means of an over-flow 
pipe, in this case an adjustable one. The time-average flow rate was determined 
by the time required to collect a measured volume of liquid from the downstream 
overflow pipe. Manometers were used to  measure the fluid levels within the 
reservoirs. 

Various mixtures of glycerin and water were used as the working fluid in order 
to  obtain the range of viscosities necessary for wide variations of Reynolds 
number. 

The peristaltic pump 

A top view of the peristaltic pump is shown schematically in figure 2. The 
pumping duct, rectangular in cross-section, was bounded by a rigid semi-circular 
back wall, a flexible moving wall in which longitudinal waves of transverse 
displacement were driven by roller cams, and two transparent cover plates. 
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H H' H '  

F I G ~ E  2. Schematic plan view of apparatus. A ,  upstream transition chamber to reservoir 
above; E ,  downstream transition chamber to reservoir above; B, spring steel flaps for 
sealing; C ,  cable to restrain rotational motion of moving wall I ; D,  cam rotor; P ,  radially- 
adjustable arms and roller cams; Q, semi-circular back wall; H ,  pressure taps; I ,  flexible 
moving wall. 

N 

H 

FIUURE 3. Schematic cross-sectional view of apparatus. See also figure 2 for identifying 
symbols. J ,  rubber wiper seal; K ,  sed-recess slot; L, top and bottom cover plates; M ,  
rollers; N ,  fluid. 
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Figure 3 shows in cross-section some details of construction. The rectangular 
duct was loin. high, with a mean width (2a) of 0.50 in., giving a mean aspect ratio 
of 20. It was laid out on a semi-circle of radius 17.2 in. Exactly three wavelengths 
were fitted within the arc length of 54.0in., so that 

h = 18.0in. and a = a/h = 0.014. 

The moving wall was composed of a 0.0625in. thick sheet of 70 durometer 
rubber attached to a 0.015in. thick sheet of spring steel. The rubber sheet 
extended on either side of the steel band, so as to form a wiper seal when installed 
in the test section. The stationary wall was composed of Plexiglas blocks sand- 
wiched between two aluminium plates. The circular arc was machined into the 
laminated back wall, then smoothed and polished to be transparent. 

Affixed directly to the ends of the backwall were the reservoir transition 
chambers. The chambers were designed so that a sudden increase in gap width 
would exist at the termination of the pumping region in order to minimize end 
effects. These transition ohambers also allowed for convenient sealing of the 
pumping chamber. In  the region of the transition chambers spring-steel flaps 
rested against the moving wall. The rubber sheet referred to above was then 
attached to  these flaps, giving a continuous dynamic seal throughout the pumping 
chamber. These flaps were clamped to the ends of the transition chambers to 
form the final seal. 

The peristaltic action of the moving wall was produced using a cam assembly to 
generate a travelling sine wave. The cam assembly was composed of a central 
rotor, driven by a variable-speed motor, which supported 48 radially adjustable 
arms on which roller cams were mounted. Thirty of the rollers were aluminium 
and eighteen were magnetic. The magnetic rollers were used at those wave 
positions which required a tension force to hold the steel band in position. 

Comparison between the experimental design and the two-dimensional theory 
In appendix A we show that the infinite periodic wave train of the theoretical 
literature can be modelled in a finite experiment if certain conditions are met, 
namely: (i) the peristaltic wave must be progressive and periodic; (ii) there must 
be an integral number of wavelengths between the reservoirs ; (iii) the pressure 
difference between the reservoirs must be constant. 

The apparatus met conditions (i) and (ii) well. However, because of the finite 
size of the reservoirs and the unsteady character of the flow, the level of each 
reservoir fluctuated somewhat (a maximum of about 3 mm). In addition, the 
flaps that were used to seal the transition chambers deformed under static 
pressure and induced additional pressure fluctuations. These effects were unim- 
portant to the studies at low Reynolds numbers, for which the pressure rise 
between reservoirs was on the scale of 20cm. However, the fluctuations in 
reservoir levels became an appreciable portion of the pressure readings in the 
experiments at high Reynolds number. 

The theories of Shapiro (1987), Burns & Parkes (1967), Hanin (1968), Fung & 
Yih (1968) and Shapiro et al. (1969) refer to a straight pump with two sym- 
metrically moving walls. Mechanically, it is much simpler to construct a duct 

30 F L M  49 
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laid out on a circular centre-line with one wall stationary. Since the radius of the 
circle (17.2in.) in the present experiment was much larger than the mean gap 
width (2a = 0+5in.), the general curvature of the channel was not significant. 
The very small value of a = 0.014 signifies that the long-wavelength theory is 
applicable. Furthermore, when a < 1 ,  the local pressure gradient is totally 
determined by the longitudinal variation of total gap width between the two 
walls; therefore the theory is essentially unchanged by the fact that one wall is 
rigid and the other moves. 

Since the moving wall was indistensible, a small oscillatory longitudinal motion 
was produced along the wall. Burns & Parkes (1967) have shown that this 
longitudinal motion has a negligible effect when a is very small, as in the present 
experiments. 

3. Experimental results for inertia-free flow 
Mean Pow vs. pressure rise 

During operation with very small values of R, and with three different amplitude 
ratios (q5 = 0.4, 0.7 and 0-9), the dimensionless time-mean flow 3 was measured 
as a function of dimensionless pressure rise per wavelength, a2ApA/,uch (see 
appendices for nomenclature). 

Figure 4 shows typical experimental results for q5 = 0.7. The experimental 
results fall on a straight line. Moreover, they show no effects of Reynolds number 
in the range given, namely, from R = 0.034 to R = 0-240. Both these findings 
confirm that the flow is essentially inertia-free in this range of R, and thus that it 
corresponds to the limit of zero Reynolds number. 

According to the theory of Shapiro et al. for R = 0, a = 0, as summarized in 
appendix A, the data should follow the solid line of figure 4,  representing (A 9). 
The deviations from the solid line may be accounted for by making two small 
corrections having to  do with departures of the experimental apparatus from the 
conditions of the simple two-dimensional theory. 

One of these departures is that the channel is rectangular in cross-section, 
rather than two-dimensional. The resulting end-wall effects are rather small, 
since the depth-width ratio is of the order of 20: 1. The method of correcting for 
the end walls is described in appendix B, and the calculation is made by setting 
%? = 0 in (B 16). This correction alone leads to the dot-dashed line of figure 4. 
The end walls act to increase the zero-flow pressure rise by 1.3 yo, and to decrease 
the flow for zero pressure rise by 0.3 yo. This may be interpreted by realizing that 
the purely peristaltic pressure rise associated with zero mean flow is brought 
about by friction, and that the end walls increase the frictional resistance; but, 
with a finite mean-flow rate, there is an additional pressure drop associated with 
and proportional to the frictional resistance of the channel. These two facts 
together account for the relative positions of the solid line and the dash-dot line 
of figure 4.  Clearly, the end walls have very little effect for the experimental 
conditions of figure 4 and do not bring theory and experiment together. 

It is interesting to note in passing, however, that the average value of (n +- l ) / n  
in (B 1) is 1.037, signifying that the end walls would algebraically decrease the 
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pressure gradient by 3.7 yo if the same mean flow were to pass through a uniform 
duct in which there were no peristaltic waves (the pressure gradient, being 
negative, would increase in absolute value). This change is quite different from 
the change shown in figure 4 for either the maximum pressure rise (+ 1.3 Yo) or 
the maximum mean flow ( -  0.3 yo). The explanation, of course, is that 2 in 
(B 1) has both positive and negative values at different values of [ = x/h; and, 
moreover, the term H3 is strongly non-linear. Thus, the substitution in (B 1) of 
the mean flow and the mean value of H produces a meaningless result. 
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FIGURE 4. Experimental results for #J = 0.7, showing dimensionless pressure rise per 

dimensional theory ; - . -. - , two-dimensional theory modified for end walls; - - - -, 
theory further modifled for insotive pumping regions, ---- , %? = 0.0070; ---, 

wavelength 218. dimensionless the-mean flow. Note that ordinate is 3APA. - , two- 

%?= 0.0090---. R = (oc/V).(a/A). 0, 0.34; a, 0.070; a, 0.240. 

The second correction to be made is that for back-leakage in so-called 'inactive 
pumping regions '. These occur in the regions of seal curvature and in the seal- 
recess slot (see figure 3), where the gap width is much larger than in the channel 
proper. These regions are relatively ineffective for pumping, since they act 
somewhat as inactive, or shunt, channels of constant cross-sectional area in 
parallel with the active peristaltic channel. The method of correcting for the 
inactive pumping regions is also given in appendix B. It involves a dimensionless 
conductance parameter %, which depends mainly on the geometry of the inactive 
channels, and which must be determined empirically. 

30-2 
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In  figure 4 the two dashed lines were obtained by integration of (B 16) over the 
interval A t  = 1,  using values for the conductance V of 0.0070 and 0.0090, 
respectively. The approximate method developed in appendix B for taking 
account of the inactive leakage area is seen to bring the theory into harmony with 
the actual circumstances of the experiment. The values of % mentioned above 
agree in order of magnitude with the Poiseuille conductance that would be 
expected of a tube having the dimensions of the inactive leakage area; in this 
sense, theory and experiment are in good agreement. 

Fortestswith$ = 0-4,the value of% that best fits the data was 0.024. However, 
because the active channel itself had such a large minimum area in this case the 
effect of leakage was quite small. As a result, any value of V between 0.00 and 
0.035 produced quite good agreement between theory and experiment. The 
reason that % does not remain constant is that it  really includes the effects of the 
resistance to lateral flow in the active channel, and is therefore somewhat 
dependent upon q5. 

Pressure-time curves at $xed locations 
As shown in appendix A, the pressure should remain constant at  integral wave- 
lengths distant from the inlet, and should vary with time between these pressure 
nodes. 

Pressure taps, connected to a differential transducer, were located at  distances 
of lh, 5h/4, 6h/4, 7h/4 and 2h from the beginning of the pumping duct. The 
pressure differences from the first tap to each of the other taps were traced on a 
chart recorder. 

Figure 5 ,  showing typical results, refers to the case # = 0-4, 2/20 = 1, where 
zo is that flow for which there is no mean pressure rise. The four charts refer 
respectively to the values of (a2/,uch) Ap,, for distances A t  = $,*,$, and 1. The 
circles are taken from the experimental traces of pressure us. time, while the 
curves are calculated theoretically by the methods of appendices A, B, including 
the corrections for the end walls and for leakage. Since these curves are rather 
strange in shape, and involve detailed information rather than time or space 
averages, they provide a very sensitive test both of the validity of the theory and 
of the experimental procedures. The agreement between theory and experiment 
is excellent. Pressure pulses measured for q5 = 0.7 and # = 0.9 also showed good 
agreement with the theory (Weinberg 1970). 

Rejlux 
Shapiro et al. (1969) showed that, when 3/Z0 < (2+q52)/3, the net time-mean 
flow 2 is the algebraic sum of a net forward time-mean flow in the core of the duct 
and a net retrograde time-mean flow near the walls. Fung & Yih (1968; 1969) 
Yin & Fung (1969) and Zien & Ostrach (1970), using Eulerian rather than 
Lagrangian averages, reached an opposite conclusion, namely, that reflux occurs 
in the core of the duct rather tha.n near the walls. 

To observe and document reflux, a neutrally-buoyant dye was injected slowly 
into the pumping channel midway between the two cover plates that constituted 
the narrow end walls of the rectangular cross-section. The transverse position of 
injection within the gap was controlled by a micrometer. A motion-picture 
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camera mounted directly above the injection port provided visual information as 
to the displacement history of the dyed fluid. 

It was found that, when reflux did occur, it  was always near the walls, never 
near the axis of the channel. This point having been settled, the domain of reflux 
was most conveniently delineated by depositing the dye very close to one of the 
walls, since Shapiro et al. showed that this is where reflux first appears. Dye near 
the wall, it was observed, moved alternately forward and backwards. If the dye 
gradually worked its way upstream, i.e. opposite to the wave direction, it was 
concluded that reflux occurred, otherwise not. 

0.5 

0.0 

-0.5 

0.5 

0.0 

-0.5 

- -  
FIGURE 5. Experimental results for $b = 0.4, 2/2,, = 1. Pressure w8. time for intervals 
A( = &,&, 2 and 1 distant from a pressure node. Vertical scale is the dimensionless pressure 
difference, 3AP = (a2/pch)Ap. Horizontal scale is the dimensionless time, ct/h. Curves are 
from two-dimensional theory modified for end walls and for inactive pumping regions. 
A%: (a) &I; ( b )  +A; (c) Qh; (d )  A. 

Such visual observations were made for values of q5 of 0.4, 0.7, and 0.9, and 
over a range of values of 3/3,,, The data are shown in figure 6 together with the 
theoretical 'limit of reflux ' (solid curve), as predicted by Shapiro et al. 
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The conformity of the experimental data to the theoretical curve, coupled 
with the observation that reflux first occurs near both walls, is decisive proof that 
the condition of reflux is determined by the sign of the Lagrangian time-mean 
velocity rather than of the Eulerian time-mean velocity. 
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FIQUEE 6 .  Map of $/& vs. $, showing regions of reflux and of trapping. Data points are 
based on visual observations of whether or not reflux or trapping occurs (see Weinberg). 

, no reflux ; 0, reflux ; A, no trapping ; a, trapping. 

Trapping 
In a frame of reference moving with the wave, the flow is steady. Accordingly, 
as viewed in the wave frame, the path lines, the streamlines and the streak lines 
are all ooincident. Usually these streamlines are similar to the wall shape, but with 
decreasing amplitude as the axis is approached. For a certain domain of q5 and 
2/2,,, however, Shapiro et al. have shown that the central streamline splits at a 
stagnation point and encloses a region of recirculating closed streamlines. This 
region contains, as it were, a bolus of fluid, within which there are internal 
circulations, but which as a whole remains ‘trapped’ within the widest part of 
the channel. In the laboratory frame of reference the bolus moves exactly with 
the wave speed. 

Trapping can be conveniently recognized only when the flow is observed in 
the wave reference frame. To this end, a movie camera was mounted to rotate 
with the central shaft of the apparatus, and with the lens directly above a 
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position of maximum channel width. In  the successive frames of film, the channel 
shape appears stationary and the fluid streams through the channel. 

Two procedures for determining the existence of trapping were used (see 
figure 7).  In one, a blob of dye is injected into the channel at  a position of mini- 
mum gap width. With no trapped bolus, the dye streams through the channel 
and ultimately disappears from view. With a trapped bolus present, the line of 
dyed fluid cannot penetrate into the region of closed streamlines. One particle of 
the dyed fluid approaches asymptotically the stagnation point, where the central 
streamline splits, while the remainder of the dyed fluid line deforms in such a way 
as to approach asymptotically the split streamline, and thereby render the latter 
visible. Figure 8 (plate l), consisting of a series of movie frames, illustrates such 
observations for the case q5 = 0.7, z/20 = 1. 

FIGURE 7. Schematic of wave-frame streamlines when trapping occurs. A,, A,, A ,  show 
successive positions of dyed fluid that is injected outside the trapped bolus. B,, B, 
show successive positions of dyed fluid that is injected inside the trapped bolus. S 
represents stagnation points. C represents split streamline that encloses trapped bolus. 

In  the second method of observation (see figure 7), a blob of dye is injected into 
the channel near the axis at  a position of maximum gap width. Without trapping, 
the dye is swept out of the field of view. With trapping, the dye moves on the 
internal closed streamlines within the bolus; that part of the dye close to the 
axis tends to approach and render visible the split stagnation streamline. The 
results of such observations are shown in the still views of figures 9(a)-(c) 
(plate 2). 

Using the foregoing procedures, the presence or absence of trapping was 
observed for q5 = 0.4, 0-7 and 0.9, and over a range of values of 2/2,,. The data 
are shown in figure 6, where it is seen that they confirm the theoretical predictions 
of Shapiro et al. (1969) for the domain in which trapping occurs. 

In  photographs of the type of figure 8, the dyed fluid particle on the central 
axis of the duct could be readily identified because its velocity approached zero 
as it neared the stagnation point. By measuring the displacement of this stagna- 
tion particle as a function of time, the normalized wave-frame velocity C/c on 
the axis could be determined quantitatively as a function of position xlh. The 
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experimental results, shown in figure 10, are in good agreement with the theory 
of Shapiro et al. 

0.30. 

0.20 

0 . 
‘3 

0.10 

0 
0.2 0.3 

FIUURE 10. Velocity (as seen in wave frame) on stagnation streamline, vs. wave-frame 
position. Data points are from displacement measurements made on photographs like 
figure 8. Curves are from two-dimensional theory of Shapiro et al. (See Weinberg 1970.) 

0, = 0.7, g/zo = 0.7; 0, 0.7, 1. 

4. Experimental results: effects of Reynolds number 
The Reynolds number was varied by using fluids of different viscosity, and by 

changes of wave speed. A range of R between 0.008 and 3 1 was attained, spanning 
more than 3 decades. For practical reasons, tests at the higher Reynolds number 
could be made only with 4 = 0.7. 

For any particular Reynolds number beyond the inertia-free range, only a 
small departure from linearity appeared in the curves of AP,, us. 3. Accordingly, 
the results are conveniently represented in terms of ApA, m a x  (for 9 = O ) ,  and 9, 
(for ApA = 0). 

These are plotted us. R in figures 11, 12. The solid curve in each graph is the 
expansion solution of Jaffrin (1971) up to terms of order R2. The dashed line in 
each graph shows the zero-Reynolds limit after modification for the effects of the 
end walls and the inactive pumping regions. 

Figure 11, showing ApA, max, indicates that the inertia-free theory remains 
valid up to R g 1 , and that Jaffrin’s second-order expansion is valid up to R 10. 

Figure 12 shows 9o ws. R, but there is more uncertainty in these results. Since 
the pressure rise within the apparatus was relatively small at high R (because of 
the low viscosity), the fluctuations in reservoir level introduced relatively large 
errors when operating with nominally equal reservoir levels (Ap,, = 0). Thus, while 
the experimental observation of ApA9 m a x  was in general very accurate, owing to 
the ease of establishing the no-flo-7 condition, the experimental observation of 
3o at high R involved errors which are estimated as being at  most & 5 % for the 
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FIUURE 11. Effect of Reynolds number-on maximum pressure rise. Ordinate shows 
dimensionless pressure rise, 3AP,,,,, for 2 = 0. Data points are from experiments with 
q5 = 0.7. Solid curve is theory based on second-order expansion in R. Dashed line is 
inertia-free theory corrected for end walls and inactive pumping regions. (See Eckstein 
1970.) Viscosity: 0, 1 cp; 0, G ;  v, 12; A, 14; 0 ,  150. 
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FIGURE 12. Similar t o  figure 11, but showing zo va. R, with 4 = 0.7. 
(See Eckstein 1970.) 
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data points of figure 12. Upon making allowance for the added experimental 
errors, however, we see that figure 12 confirms the conclusions reached on the 
basis of figure 11. 

5. Conclusions 
(i) The inertia-free theory is valid up to R 1. 
(ii) The theoretical predictions of Shapiro et al., concerning reflux and trapping 

in the inertia-free range, are confirmed by the experiments. The phenomenon of 
reflux is determined by the sign of the Lagrangian time-mean velocity rather 
than of the Eulerian time-mean velocity. 

(iii) The second-order expansion in R is valid up to R 10. 

This paper is based on the Doctoral thesis of S. L. Weinberg and on the Master's 
thesis of E. C. Eckstein. The work on which the paper is based was supported in 
part by Fluid Dynamics Branch, Office of Naval Research, under contract 
N00014-67-A-0204-0008, NR 062-400/1-11-67. 

Appendix A. Modelling of an infinite two-dimensional wave train 
An infinite wave train is clearly not practical for experimentation, except for 

the special case where it is closed upon itself, and thus transports fluid without 
net pressure rise. We accordingly seek the circumstances under which an experi- 
ment with a finite number of waves does indeed represent the infinite wave train 
which is the subject of almost all the theoretical literature. 

Continuity 
We consider the flow as seen in the laboratory reference frame (see figure 1). Let 
u ( x ,  y, t )  be the longitudinal velocity, p ( x ,  t )  the pressure over each section, h(x, t )  
the lateral distance from the axis to the wall, t the time, and &(x, t )  the instan- 
taneous volume flow (per unit width normal to the paper) between the axis and 
the wall. Then, in terms of the normalized variables, 

.$ = %/A,  r --= &/A ,  2?(t,r) = &lac and H(6 , r )  = h/a, 

the equation of continuity of an incompressible fluid is written as 

aslag + aHla7 = 0. 

w-, 7) = - 7) .  

(A 1) 

We suppose that the peristaltic wave in the wall is progressive, i.e. 

Accordingly, a H / h  = -H' = -aH/aE where H' signifies the derivative of the 
fuiction with respect to the argument (k -7 ) .  Then (A 1) becomes 

a q a t  = aH/ag. (A 2) 

(A 3 4  

Upon integration with respect to at constant 7,  we get 

9(E,7)  = H(E-7) +f(7), 
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where f ( T )  is a constant of integration that depends upon time. The physical 
meaning off(7) becomes apparent when we consider that the instantaneous flow 
in the laboratory frame is P h  

while the instantaneous flow in a frame of reference that moves with the wave 
(the wave-frame) is h 6 =Jo (u-c)dy.  

A h 

This shows that Q = Q-ch,  or, in dimensionless terms, 2 = 2- H ;  (A3a) then 
reveals thatf(7) is identical with the dimensionless volume flow rate A?(T) as seen 
in the wave frame. 

The time-mean flow 3 during one period, a t  a fixed location, may now be 
expressed with the help of (A 3 a)  as 

A 

where B is the time-mean value of H .  

Navier-Stokes equation 
For long wavelengths, A & a, the pressure is instanta,neously uniform over each 
cross-section; that is, p(x ,  y ,  t )  = p(z ,  t ) .  For very low Reynolds number, such 
that the flow is inertia-free, the longitudinal pressure gradient ap/ax is balanced 
by the net viscous force per unit volume. For long wavelengths, the latter is 
pa2u/ay2. Thus, a balance of forces yields ap(x, t)/ax = ya2u/ay2. Integrating this 
twice with respect to y at constant x and t ,  and using the boundary conditions 
that (i) au/ay = 0 at  y = 0, and (ii) u = 0 at y = h, one gets for u(x, y , t )  a local 
Poiseuille parabolic velocity distribution in terms of the instantaneous local 
pressure gradient. Then, integrating 

/;udY 

over the cross-section for the flow Q, one gets Poiseuille's law locally in the form, 

aP/a(= - q ~ ,  T ) / H 3 ,  (A 41 

where P = a2p/3pcA is the dimensionless pressure. 
Substitution for 2 from (A 3a) then leads to 

Now consider a machine of dimensionless length 9, in which fluid is pumped 
by means of a peristaltic wave from a reservoir at the pressure P1(7) to  a reservoir 
at the pressure P2(7). Let the pressure difference P2-P' be denoted by AP,(T). 
Integration of (A 5) with respect to E, with T held constant, yields 

where we have replaced d t  by d((--7), since T is constant during the integration. 
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Simulation of an injinite wave train 

We have already postulated a periodic travelling wave of the general form 
H ( 5 - 7 ) .  Therefore, if 9 is an integral number of wavelengths, each of the 
integrals in ( A  6) is independent of time. If, further, the pressure rise AP, between 
the reservoirs is maintained Constant, (A 6) shows that 2 ( 7 )  reduces to a constant, 
independent of time. This means that the flow, in all its details, is steady in the 
wave frame of reference. Furthermore, examination of ( A 3 a )  shows that 
9(<, T )  = 2(5 - 7 ) ,  i.e. the flow as seen in the laboratory frame exhibits travelling- 
wave behaviour; and, concomitantly, from (A 4) or (A 5), the pressure gradient 
aPli?t is also a function only of (5 - 7) .  

Now all the properties listed above are precisely those which the various 
theoretical investigations ascribe to an 'infinite wave train '. Indeed, we have 
here described with precision what this phrase means. To realize such a situation 
experimentally requires (i) a periodic travelling wave in H ,  (ii) an integral number 
of wavelengths between reservoirs, and (iii) a pressure difference between the 
reservoirs that does not change with time. 

A 

Theoretical relation between pressure rise and mean Jlow 

Suppose that we have indeed fulfilled the foregoing conditions to simulate an 
infinite wave train, such that 9 is constant. Then, from (A 3 b )  and ( A 4 ) ,  

A 

A 

22 = 9 ( 5 - 7 ) - H ( E - 7 )  = 3-a, (A 7) 

where 3;s now the same for all periods. Using (A 7),  ( A  5 )  may now be expressed as 

Since the number of waves is integral and the flow and pressure gradient are 
periodic, it is convenient to integrate (A 8) over one wavelength, i.e. from 5 = 0 
to 6 = 1. Upon assumption of a sinusoidal wave form, H = 1 + q5 sin 2n(5 - 7 ) ,  

and noting that B = 1, integration of (A 8) yields 

AP --- 4' [3-?+i?2] 
A - 2(1-$57it 

for the dimensionless pressure rise per wavelength. 

Pressure vs. time at $xed locutions 

We now consider the pressure-time relationship, P(7),  at a fixed location 5, since 
this is one of the measurements easily made as a check on the theory. 

We return to (A 8) and integrate it from the inlet reservoir a t  5 = 0, where PI 
is constant, to any location 5, where P has the value P5(7), 

First we note that, if6 is an integer, each of the integrals is a constant, independent 
of time. Thus, the value of I$ a t  any integral wavelength from the inlet E= 1,2, . . , , 
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is a constant, independent of time. The integral wavelength positions are there- 
fore nodal points for the pressure. 

If g is non-integral, the shape of the fractional wavelength momentarily 
occupying the length g will change with time. Mathematically, each integral of 
(A 10) will depend upon 7,  and thus Pt will be a function of time. Therefore, if 
PI is interpreted as representing the constant pressure at one of the nodal points, 
(A 10) yields P'(7) at any position between that nodal position and the next one. 

Appendix B. Corrections for end walls and for inactive leakage area 
The theory of appendix A neglects two effects present in the experiments. 

Approximate corrections may be developed for these, as shown below. 
First, appendix A deals with a purely two-dimensional flow having an infinite 

aspect ratio w/2h, where w is the depth of the channel normal to  the paper and 
2h is the local total width of channel. The aspect ratio of the experiments is 
variable, but is of the order of 20: 1; this turns out to be large enough for the flow 
to  be affected only slightly by the end walls. Purday (1949) provides a good 
approximation to the calculation of local Poiseuille flow in a channel of rectangular 
cross-section. His solution modifies (A 4) to  

aPpg = - [ (n + 1)/n] A?/H3, 

n(n+ 1) = (4) (w/h)2. 

(B 1) 

(B 2 )  

where n is a function of aspect ratio determined by 

Second, the theory of appendix A overlooks the presence of the inactive 
channels near the moving seals. We deal with this approximately by supposing 
that the pump comprises two passages in parallel: (i) the quasi-two-dimensional 
active channel in which peristaltic waves propel the fluid, and (ii) an inactive 
leakage channel of constant cross-sectional area (see figure 3). 

If the minimum gap width in the active channel is not too small compared with 
the depth of the active channel, the pressure at any length co-ordinate &' will be 
nearly identical in the active and inactive channels. We assume that this is true, 
thus neglecting the pressure variations required to force liquid between the two 
channels. 

Let Q(C,7) be the flow through the active channel, and let QL(& 7) be the flow 
through the leakage channel; further, let 

Q n e t ( L 7 )  = Q + QL (B 3) 

be the net instantaneous flow through the machine at the position 6. 
The total local cross-sectional area at  any instant is 

Anet(537) = 2wh+AL, 

where A ,  is the inactive leakage area. Now, defining 

9 n e t  Qnet/Zwac and A? Q / ~ w u c ,  

(B 3) may be written as %net = 2 + 
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Noting that A,  is a constant, the equation of continuity is written as 

aL&,,t/a<+ aH/& = 0.  (B 61 

a=%et/a6 aH/a t ,  (B 7) 

2 n e t  = H + f ( 7 ) .  (B 8) 

Assuming, as before, a travelling wave, H = H ( f - 7 ) ,  (B6) may be expressed as 

which, upon integration with respect to  f ,  yields 

We now assume that the flow in the leakage channel is also inertia-free. Using 
the original premise that the two channels experience the same pressure gradient, 
it follows that Q L  is proportional to aP/a[. Using dimensional arguments, this is 
expressed as 

where K is a pure positive number whose magnitude depends only on the cross- 
sectional shape of the leakage channel. If the latter were circular, for instance, 
K would have the value &r. Elimination of aP/af from ( B  1 )  and (B 9) produces 

Substituting this value of QL/ALc into (B 5 )  then leads to  

where V is a pure number having the character of a conductance, and is defined by 

V = KAE/2a3w. (B 12) 

Substituting for 9 from (B 11) into (B l), and using (B 8), we get 

Integrating over the dimensionless distance 9 between the end reservoirs, and 
noting that df = d(f - 7 )  for an int'egration at constant time, we obtain 

Now, both H and n are functions of the argument (6 -7) .  Therefore, if9 is an 
integer (signifying an integral number of wavelengths between the reservoirs), 
and if the pressure difference APT between the reservoirs is constant in time, study 
of (B 14) shows that f (7) must in fact be a constant T. These are precisely the 
conditions of the experiments. 

Taking the time-mean of (B 8), we may thereby arrive at 
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which should be compared with (As) .  Note that 2net is the time-mean flow 
measured in the experiments. 

Integration of (B 16) for A t  = 1 gives the pressure rise per wavelength while 
integration for A t  < 1, with various values of 7, gives the pressure-time relation- 
ship at  the location A6 downstrea,m of a pressure node. The integrations must 
be performed numerically. 
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FIGURE 8. Cine frames for y5 = 0.7, s/20 = 1.  Dye originally injected outside trapped bolus 
ultimately approximates the shape of the split stagnation streamline (see Weinberg). 
7: (a )  0; (b )  0,066; (c) 0.204; (d )  0.287; ( e )  0.368; (f) 0.532; (9)  0.695; (11) 1.190. 

WEINBERG, ECKSTEIN AND SHAPIRO (Facing p .  480) 
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FIGURE 9. Cine frames for experiments with c/go = 1. Dye is originally injected inside the 
trapped bolus and ultimately approxirnates the split stagnation streamline. (a)  Leading 
edge of bolus. (b)  Internal streamline pattern, (c) Overall view of' bolus. (a ) ,  ( b )  4 = 0.9; 
(c) = 0.7. (See Weinberg.) 
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